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Abstract 
 

Recent progress in genomics and experimental biology 
has brought exponential growth of the biological 
information available for computational analysis in 
public genomics databases. However, applying the 
potentially enormous scientific value of this information 
to the understanding of biological systems requires 
computing and data storage technology of an 
unprecedented scale. The Grid, with its aggregated and 
distributed computational and storage infrastructure, 
offers an ideal platform for high-throughput 
bioinformatics analysis. To leverage this platform, we 
have developed the Genome Analysis Research 
Environment (GNARE) – a scalable computational 
system for the high-throughput analysis of genomes, 
which provides an integrated database and 
computational backend for data-driven bioinformatics 
applications. GNARE efficiently automates the major 
steps of genome analysis, including acquisition of data 
from multiple genomic databases; data analysis by a 
diverse set of bioinformatics tools; and storage of results 
and annotations. 

High-throughput computations in GNARE are 
performed by using distributed heterogeneous Grid 
computing resources such as Grid2003, TeraGrid, and 
the DOE Science Grid. Multistep genome analysis 
workflows involving massive data processing, the use of 
application-specific tools and algorithms, and updating 
of an integrated database to provide interactive Web 
access to results are all expressed and controlled by a 
“virtual data” model that transparently maps 
computational workflows to distributed Grid resources.  

This paper describes how Grid technologies such as 
Globus, Condor, and the Gryphyn Virtual Data System 
were applied in the development of GNARE. We focus on 
our approach to Grid resource allocation and to the use 
of GNARE as a computational framework for developing 
bioinformatics applications. 

 

1. Introduction 
During the past decade, the scientific community has 

witnessed an unprecedented accumulation of gene 
sequence data and data related to the physiology and 
biochemistry of organisms. To date, 250 genomes have 
been sequenced, and genomes of more than 1,000 

organisms are at various levels of completion [1]. In order 
to exploit the enormous scientific value of this 
information for understanding biological systems, the 
information must be integrated, analyzed, graphically 
displayed, and ultimately modeled computationally [2]. 

Comparative and evolutionary analysis of the wide 
spectrum of phylogenetically diverse organisms 
represents one of the most powerful approaches for 
interpreting genomes and for understanding how 
organisms adapt to environments. Such analysis allows 
for systematic exploration of mechanisms that have led to 
diversification of biological systems on all levels of their 
organization: genomic, metabolic, and phenotypic. A 
comparative approach, however, requires the 
development of high-throughput computational 
environments that integrate large amounts of genomic and 
experimental data, powerful tools and algorithms for 
knowledge discovery and data mining, tools for 
collaborative analysis of biological data by the experts 
residing in remote locations, and scalable computational 
backends.  

The efficiency and accuracy of genetic sequence 
analysis is achieved by using various bioinformatics tools 
and algorithms (e.g., analysis of global similarities [3] [4] 
[5], domain and motif analysis [6] [7] [8], analysis of the 
relevant structural [9] [10], and functional data). 
Acquiring and integrating the needed information can be 
extremely tedious, time-consuming, and prone to human 
error if done by manually. Reliable execution of such 
multistep analytical processes could be achieved, 
however, by controlled workflows and analytical 
pipelines. Another problem that emerges in high-
throughput bioinformatics is related to the fact that most 
of the tools and algorithms used for analysis of genomic 
data are CPU-intensive, requiring computational 
resources beyond those available to researchers at a single 
location. The aggregated and distributed computational 
and storage infrastructure of the Grid offers an ideal 
platform for mining biological information at this large 
scale. A number of groups are working on utilizing Grid 
technologies for bioinformatics purposes. Examples 
include the Integrative Genome Annotation Pipeline 
(iGAP), which has been used by the international 
consortium “Encyclopedia of Life” [11] for the extensive 
annotation of protein sequence data; myGrid [12], a large-
scale Grid-based European effort; the North Carolina 



BioGRID [13]; EUROGRID [14]; and the Asia Pacific 
BioGrid Initiative [15]. 

We have developed and continue to extend a system 
that uses Grid technology to address the needs of high-
throughput genetic sequence analysis. This Genome 
Analysis Research Environment (GNARE) is a high-
performance, scalable computational environment that 
allows efficient automation of the major steps of genome 
analysis, including data acquisition from diverse genomic 
databases and analysis by several bioinformatics tools and 
algorithms. GNARE also expedites the process of storing 
the results of analyses and annotations. It is based on Grid 
technology (specifically the Globus Toolkit® [16], 
Condor [17], and the GriPhyN virtual data system [18]) 
and uses the computational resources of GRID2003 [19], 
TeraGrid [20], and the DOE Science Grid [21] to perform 
high-throughput computations. GNARE’s flexible 
architecture allows users to tailor the genome analysis 
process to their individual needs. The system can function 
in an automated mode as well as interactively through a 
Web-based interface. 

This paper describes the GNARE implementation and 
its automated database update pipeline GADU, our 
experiences using GNARE on the Grid, and our efforts to 
increase the application’s computational power and speed 
through further Grid integration and enhancement. We 
also describe scientific applications that use GNARE for 
high-throughput analysis and annotation of genomes. 

 

2. System Overview and Design 
GNARE comprises three main components, as 

illustrated in Figure 1: GNARE Architecture. GADU is 
the main engine that executes computationally intensive 
workflows on the Grid and performs the Integrated 
Database updates. The Integrated Database (see Section 
4) warehouses sequence data and annotations from the 
monitored public databases as well as the results of data 
analyses from the GADU update engine. The third 
component is the set of Web-based applications that use 
the Integrated Database (see Section 5.2) and GADU’s 
analysis services. 
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Figure 1: GNARE Architecture 

GADU serves as the heart of the system. It acts as a 
gateway to the Grid, handling all computational analysis 
for the GNARE system. It is an automated, scalable, high-
throughput computational workflow engine that enables 
the Grid execution of bioinformatics tools. The 
interpretation of every newly sequenced genome involves 
the analysis of sequence data by a workflow pipeline 
composed of multiple bioinformatics tools, the execution 
of result and annotation parsers, and other intermediate 
data-transforming scripts. The GADU implementation 
comprises two modules: an Analysis Server and an 
Update Server. The Analysis Server automatically creates 
workflows in the abstract Virtual Data Language, based 
on predefined templates (Section 3.5), which it then 
executes on distributed Grid resources such as Grid2003 
and TeraGrid. The Update Server updates the Integrated 
Database with recently changed data from a set of 
monitored public databases (currently including NCBI 
RefSeq [22], PIR [23], InterPro [6], and KEGG [24]).  

In the following sections, we describe the 
implementation details of each of the components of 
GNARE. 
 

3. The GADU Analysis Server 
We start with the GADU Analysis Server, which is 

responsible for executing bioinformatics analyses on the 
Grid. Its components are shown in Figure 2 and described 
below. 
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Figure 2: GADU Analysis Server 
 

3.1. Job Description File 
The Job Description File (item 3 in Figure 2) 

describes a job that may involve simply running a 
bioinformatics tool on the local machine, or alternatively 
the execution of a predefined complex workflow on the 
Grid. 

For example, the analysis of a set of protein sequences 
using BLAST [25] against some database is represented 
in the Job Description File with all the information 
required to perform this analysis, including the tool name 
(BLAST), path of the input sequence file, path of the 
database sequence file, and parameters to be used for 
BLAST. Similarly, every analysis (e.g., BLOCKS [26], 
PFAM [27], TMHMM [28]) can be represented by a Job 
Description File appropriate for the tool. Using the 
information from this file, the Job Processing Server 
along with Workflow Generator creates the actual 
workflow in a Virtual Data Language and eventually in 
the form of a condor DAG. 

 
3.2. Job Processing Server 

The Job Processing Server (item 1 in Figure 2) accepts 
a Job Description File and creates a worker process (item 
2) to handle the job. Other stand-alone services are also 
invoked at this time, namely, the Site Selector (item 4) 
and Workflow Generator (item 5). In addition to creating 
the worker process, the server also takes care of creating a 
session for each job and controls the “Site Selector” so as 
to keep an updated list of good working sites for job 
submission. The site selector is explained later.  

 
3.3. Worker Process 

The worker process (item 2 in Figure 2) determines 
how to handle each job based on the information in the 
Job Description File. The worker process first creates the 
directory structure for the job and then sends the 
sequence database (e.g., in the case of BLAST) to all 

usable sites on the Grid. A list of usable sites is collected 
from the “Site Selector” (item 4).  

The next step is to create a batch job where we select a 
batch of query sequences to be submitted to a selected 
Grid site. The worker process first asks for a “good 
performing site” from the site selector. Based on the 
information it gets back (explained in next subsection), it 
picks a batch of sequences from the original input 
sequence file and sends them to the site selected. For 
example, if the Site Selector picked a site with 20 CPUs 
to be used for 1,000 sequences to be processed for 
BLAST, then the worker process would pick a batch of 
1,000 sequences from the main input file after the last 
sequence processed. Next, the worker process calls the 
Workflow Generator (item 5 in Figure 2, described in 
detail in Section 3.5), which encodes the workflow in an 
abstract Virtual Data Language (VDL). Condor represents 
a workflow in the form of a DAG and executes the 
workflow on the selected Grid site. Once the Worker 
Process submits a batch job, or rather a Condor DAG, to 
the selected Grid site using Condor, it writes all the 
details of the job to a log file (item 6 in Figure 2) and 
goes back to generate the next batch job. The worker 
process continues in this manner until all sequences have 
been processed. 

 
3.4. Site Selector 

One challenge in using the Grid reliably for high-
throughput analysis is monitoring the state of all Grid 
sites and how well they have performed for job requests 
from a given submit host. If we are executing a workflow 
that may submit large numbers of jobs to different Grid 
sites over a period of several days, it is important to keep 
track of which sites are available to run jobs at different 
times. We view a site as “available” if our submit host 
can communicate with it, if it is responding to Globus 
Toolkit job-submission commands, and if it will run our 
jobs promptly, with minimal queuing delays. 

To address this issue, we have developed a Site 
Selector (item 4 in Figure 2, and also Figure 3) that uses 
information collected at the submit host to determine 
which sites meet the required responsiveness criteria. 
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Figure 3: Implementation of the Site Selector 

 
The site tester (“probe”) script (item 3 in Figure 3) can 

be started and controlled manually or by using the Job 
Processing Server. The script submits a small test job to 
all Grid sites of interest and then records for each site 
whether the site responded and, if so, its performance 
(i.e., response time). The resulting Site Status File (item 
4) notes for each site a status (either the site responded 
correctly, or the site responded incorrectly or failed to 
respond before a timeout period) and the time taken for 
the site to respond. We update this Site Status File 
regularly to maintain the current status of all the sites. 

The Site Selector then uses the information in the Site 
Status File to select the site to which we can submit our 
next job. The selector scripts takes into consideration the 
state of the Condor queue at the submit host (item 6 in 
Figure 3) in order to make a decision. Whenever there is 
request from the “Job Processing Server” to select a good 
site, the Site Selector selects all the sites from the Site 
Status File that have been flagged as acceptable by the 
tester script. For each site it then looks at the submit 
host’s Condor-G queue (using the condor_q command) 
for the number of jobs that have already been submitted 
to that site. If all the previously submitted jobs to this site 
are in “Running” state or if there are no jobs submitted to 
this site, then it selects the site for the next job. If, 
however, even one job at this site is waiting to run, then 
the site in consideration is not selected, and the selector 
scripts looks at the next site. Once a job has been 
submitted, the selector script makes sure that the same 
site is not selected again for a specified period, so that the 
newly submitted job has time to show up in the Condor 
queue.  

Apart from selecting a site, the site selector also 
returns job-specific information to the requester. Based 
on the statistics of the previously executed jobs, it creates 
a configuration file, the Site Info File (item 7). This file 
records the maximum number of nodes (or CPUs) at each 
site, the number of nodes to be requested for each batch 
job submitted at this site, the number of sequences to be 
processed at each node, and other site-specific 
information. Based on this configuration file, the selector 
script also calculates the number of sequences that should 
be processed in a single job at the selected site and the 
number of nodes to be requested for that job. This 
information is all returned to the requester, which in our 
case is the Worker Process.  

 
3.5. Workflow Generator 

Having determined the site to which a job should be 
directed, the worker process assembles a complete 
description of the job that is to be executed and passes 
this information to the Workflow Generator (item 5 in 
Figure 2). The Workflow Generator is then responsible 
for producing a workflow suitable for execution in the 
Grid environment. This task is accomplished through the 
use of the GriPhyN virtual data system’s “virtual data 
language” (VDL) [29]. VDL provides simplified, abstract 
access to large-scale Grid computation and storage 
resources. It also provides the ability to  

• track accurately the provenance of results of the 
workflows, describing how they were obtained 
from transformations of input data; 

• discover data through tools that search for specific 
transformations; 

• produce new analysis work based on previously 
executed work, which allows for the comparison 
of transformation patterns executed at different 
times; and 

• audit and disseminate results. 
Figure 4 illustrates the six-stage workflow produced 

for a simple comparative analysis of 100 protein 
sequences, grouped into five sets, through the BLAST 
tool. The stages include transferring data to and from 
Grid storage servers, partitioning input data for the 
subsequent BLAST process, parsing specific information 
that the user wants to capture from protein sequences, and 
concatenating the final results. 
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Top, a 6-step workflow with 5-way parallelism; below: the 
center-path details. 

 
This workflow is represented in VDL via a set of 

transformation definitions (abstract interfaces that 
describe an application program such as BLAST, Blocks, 
or result-parser) and a set of derivations—in effect, 
function calls that specify inputs such as genome 
sequence files, output files from comparative analysis 
tools, and textual parameters: in other words, all the 
information coming from the worker process. 

The VDL fragments below illustrate the notation. The 
first two statements define the transformations 
FileBreaker and BLAST shown in Figure 4. These 
transformation definitions act as function definitions and 
specify the formal arguments to an application, as well as 
the details of how those arguments are passed to and from 
the application represented by the TR definition. In the 
case of FileBreaker, the arguments include a genome 
sequence input file, the subsequent output files, and the 
number of computer resources to use in the Grid 
environment. 

  TR FileBreaker(input filename, none nodes, 
output sequences[], none species) { 
  argument = ${species}; 
  argument = ${filename}; 
  argument = ${nodes}; 
  profile globus.maxwalltime = "300"; 
} 
 
TR BLAST( none OutPre, none evalue, input 
query[], none type ) { 
  argument = ${OutPre}; 
  argument = ${evalue}; 
  profile globus.maxwalltime = "300"; 
} 
 
DV jobNo_1_1separator->FileBreaker( 
  filename=@{input:"inputfile.1"|rt},  
  nodes="5",  
  sequences=[@{output:"job1.0":"tmp"}, 
             @{output:"job1.1":"tmp"}, 
             @{output:"job1.2":"tmp"}, 
             @{output:"job1.3":"tmp"}, 
             @{output:"job1.4":"tmp"} ], 
  species="Aeropyrum_Pernix" 
) 

Figure 5: VDL for BLAST workflow 
 
The third statement specifies a FileBreaker derivation. 

Derivations, defined by “DV” statements, specify the 
actual arguments to be passed to a transformation. File 
names used as arguments in DV statements are “logical 
names,” mapped to physical file names at run time. 

Data transfer for VDL is performed automatically and 
transparently for the user. For example, the physical file 
for the logical filename “inputfile.1” will be transferred 
automatically to the site selected for execution of the 
FileBreaker transformation via GridFTP [30], which 
provides secure, efficient data movement in Grid 
environments. Input files to transformations are 
automatically located in the Grid by searching for 
physical copies of a logical file in a replica location 
service such as RLS [31. Output files are automatically 
cataloged in the same location service for use in 
subsequent transformations and workflows. In the 
transformation “BLAST,” above, we use the “profile” 
feature of VDL to specify the run-time limit for that 
process. VDL profiles permit parameters to be passed to 
components of the run-time environment. 

Once the VDL for the workflow is written, the worker 
process invokes the GriPhyN virtual data system to 
execute the workflow at the Grid site selected previously 
by the site selector. This task is achieved via the 
DAGman (Directed Acyclic Graph Manager), a 
metascheduler for Condor, which submits jobs to remote 
site via Condor-G in an order determined by specified 
interdependencies, which in this case are derived from the 
VDL specification. 



 

4. Update Server and Integrated Database 
 
As shown in Figure 1, the Update Server helps in the 

acquisition of genomic data from the public databases like 
NCBI, PIR, PDB [32], KEGG and parses and uploads the 
data into the Integrated Database. It also uploads the 
parsed results of the various analysis tools and workflows 
into the integrated database. 

The Update Server uses its library of parsers for all the 
different databases (flat files) that it downloads from the 
public databases. The acquisition process can be 
automatically executed at a predefined interval of time, in 
which case the server checks for new updates to 
download, or it can be started manually whenever there is 
a new release of updated data. Once the databases are 
downloaded and parsed, the Update Server uploads the 
data into the integrated database. The uploading process 
has been parallelized locally by forking appropriate 
number (based on the maximum permitted number of 
database handles) of child processes that upload the data 
using SQLLoader. Similarly whenever we have parsed 
results from the various analysis tools and predefined 
workflows that are executed by the Analysis Server, the 
Update Server uploads the data into the Integrated 
Database. 

The volume and complexity of the data, as well as the 
diversity of the applications being developed at 
Mathematics and Computer Science Division, require the 
data to be stored in a highly integrated fashion. We have 
developed an integrated relational database that serves as 
a platform on which we can efficiently develop 
bioinformatics applications. The Integrated Database 
includes sequence and annotation data from public 
databases NCBI, SwissProt [33], PIR, UniProt [34], and 
Interpro, as well as metabolic pathway information from 
EMP [35] and KEGG. The database also contains the 
results obtained from applying different bioinformatics 
tools to the sequence data, for example, BLAST, Blocks, 
and TMHMM. The GADU Update Server ingests and 
integrates all of this data into an integrated warehouse 
database, automatically cross-referencing related entities 
from the various data sources. 

 

5. Results 
 
In this section we describe the two significant benefits 

that have resulted from developing and deploying the 
GNARE system: the high-throughput analysis of updated 
genome sequence data that we have achieved with 
GADU, and the power that GADU and the Integrated 
Database have provided for building powerful interactive 
applications. 
 

 
5.1. GADU Throughput 
 

GADU has been used extensively by the 
computational biology group at Argonne National 
Laboratory as well as by the SEED [36] project, the NIH 
Midwest Center for Structural Genomics (MCSG) [37], 
and the NIH Great Lakes Regional Center of Excellence 
[38]. We have developed and continue to develop 
automated analytical pipelines for the applications in 
order to manage and submit computationally intensive 
jobs to the Grid. One such pipeline is a very basic one 
designed to use the BLAST tool for comparative analysis 
computations on the complete protein sequence universe.  
There are constant updates to the protein sequence 
universe; at this point it comprises over 2.1 million amino 
acid sequences. These sequences are analyzed 
individually to find out similarities among them that 
could give clues about how sequences are related with 
each other. The large number of protein sequences makes 
these computations very computer intensive. The 
following results demonstrate how a Grid environment 
for the computations increases the efficiency of the 
GNARE environment. 

Several of the groups mentioned above have used the 
BLAST pipeline for their sequence analysis and 
annotations. One of the first instances of using this 
BLAST pipeline was for the analysis of the data for the 
SEED project, which at the time consisted of pairwise 
comparisons of a database of 1.8 million protein 
sequences against itself. The complete analysis was 
performed in 84 hours using 250 nodes from the DOE 
Science Grid site at the Argonne Laboratory Computing 
Resource Center. Typically, depending on the platform 
and size of the database, a single BLAST process for one 
sequence may take anywhere from 20 seconds to 60 
seconds. 

Since that first run, many more BLAST pipeline 
invocations have been performed, and the runs have 
become more efficient with the addition of more Grid 
resources (e.g., GRID2003 and TeraGrid). The size of the 
protein sequence database has also increased to over 2.1 
million sequences. Unlike the first run, more recent runs 
have been performed with the Site Selector mechanism.  
This mechanism decreased the labor of the earlier runs in 
having to manually select the sites to which to send the 
analysis. Indeed, even though the quantity of the protein 
sequence universe has increased, the real time taken to 
complete the whole database has decreased, as shown in 
Table 1. This time reduction is due mainly to the ability 
of the Site Selector to test the availability of a Grid site 
before submitting a job to that site. One of the main 
problems in the earlier runs was the time wasted 



recomputing many of the protein sequences submitted to 
unavailable resources. 

 
Table 1: Runtime results with and without the Site 

Seclector 
 

   Runtime 
         (hours) 

 
Pipeline 

DOE Science 
w/o Site Select 

 
1.4 million seq 

GRID3 
w/o Site Select 

 
1.5 million seq 

GRID3, TeraGrid 
w/ Site Select 

 
1.7 million seq 

BLAST 170 184 108 
Blocks 216 224 120 

 
The BLAST pipeline is not the only pipeline run using 

the Grid environment; however, it is the most common 
one that we run today. Other bioinformatics tools are also 
run for the complete protein sequence database using 
different tools (e.g. Blocks, TMHMM) to extract different 
vector information about the individual protein 
sequences.  tools are as computer intensive as the BLAST 
pipeline and take a similar amount of time to analyze. 

 
5.2. GNARE Applications 

 
The use of GNARE has been essential in developing 

the following bioinformatics applications: 
PUMA2 [39], a system for high-throughput analysis 

and metabolic reconstruction of genomes from the 
sequence data, provides a platform for interactive genome 
functional annotation, metabolic reconstruction and the 
study of evolution of metabolism and biological function. 
It contains analyses of over 1,000 completed and partially 
sequenced organisms through precomputed sequence 
analysis results using GNARE. 

Pathos [40] provides the bioinformatics support to 
members of the NIH/NIAID Great Lakes Regional Center 
of Excellence in Biodefense research.  

TarGet [41], a computational environment supporting 
the NIH Midwest Center for Structural Genomics 
(MCSG) serves researchers working on selection of 
protein targets of biomedical importance for the 
determination of 3D structure. 

Sentra [42] provides an interface to a database of 
prokaryotic Signal Transduction proteins. 

MetaGenome serves researchers of the DOE 
Microbial Genome program [43]. It provides 
bioinformatics support for the identification and 
characterization of organisms present in environmental 
samples taken from the Hanford site. 

Chisel [44] provides function prediction, evolutionary 
and high-resolution analyses of genetic sequence data for 
enzymatic functions. 

In order to provide up-to-date data and analyses to the 
researchers involved in these projects, given the growth 
of genomic sequence data, the use of state-of-the-art 

computational technologies such as distributed computing 
is essential. 

 

6. Summary and Future Work 
 
The use of GNARE has proved essential in developing 

applications in evolutionary analysis of genomes 
(PUMA2, the SEED), biodefense research (PathosDB), 
structural biology (TarGet DB), and bioremediation 
(MetaGenome), all of which depend on the availability of 
up-to-date annotations and rely on comparative analysis 
of large sets of phylogenetically diverse organisms. Use 
of GNARE dramatically reduced the time and human 
resources required for genome analysis. The increase in 
efficiency and speed of genome analysis enabled the 
expert biologists involved in these application projects to 
concentrate on essential biological problems without 
wasting time and effort on data processing.  

GNARE’s modular architecture is especially useful for 
annotation and analysis of newly sequenced genomes. 
Availability of new experimental results concerning 
functions of proteins previously annotated as 
hypothetical, as well as improvements in the sensitivity 
and accuracy of bioinformatics tools, requires periodic 
revisiting of previously annotated genomes and 
reassignment of functions using this newly acquired 
knowledge. The increased efficiency of genome analysis 
offered by the GNARE system and the Grid considerably 
simplifies the analysis of newly sequenced genomes and 
the reannotation of previously annotated genomes. 
GNARE can be an interface to leverage Grid resources 
for all biologists interested in performing such complex 
computations. It can hide the complex technologies 
involved in using distributed Grid resources and help 
users perform faster and better analyses. 

In future work, we plan to advance further the use of 
Grid technology for the needs of bioinformatics 
applications in two main areas. First, we will provide 
services to bioinformatics community via a Web-based 
gateway, thus allowing users to submit and analyze their 
data by various tools and algorithms using GNARE as an 
entry port to the Grid environment. This server will also 
enable users to create customized controlled workflows 
using GNARE’s interface. The development of such a 
server will allow access to advantages offered by the Grid 
to wide community of researchers who will not be able to 
use the Grid otherwise because of the lack of necessary 
expertise or resources. A prototype of the GNARE Web 
server has already developed.  

Second, we will implement a virtual data warehouse 
that will use the Grid environment for navigation and 
analysis of data residing in remote locations. 
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